The Steepest Slopes on the Moon:

A Clue to Understanding Geological Processes

Why?

Slopes steeper than the angle of repose:

- Degrade with time
 - ⇒ A clue to age
 - ⇒ A clue to degradation processes
- Are formed by a limited set of processes
 - ⇒ A clue to formation processes

How?

3 2 1 2 25m 4

- LOLA data
- Topographic gradient (aka 2D slope) at 25 m baseline
- From 3 spots within a single shot:
 - 1-2-3 or 1-3-4 or 1-4-5 or 1-5-2
 - Non-LOLA-anomaly (day time) data only;
 from the circular orbit only
- > ~ 2.4 ×10⁹ slope measurements

Incremental slope-frequency distribution

- Slopes >32° are extremely rare (0.2%)
- Roll-over for slopes >32°
- Effect of the angle of repose

Global simple cylindrical projection centered at the sub-Earth point

- Large Copernican-age craters
- Some scattered dots are small fresh craters, but many of them are bad data points

- Large Copernican- and some Eratosthenian-age craters
- Orientale basin rings
- Some scattered dots are bad data points

- Large Copernican- and Eratosthenian-age craters
- Orientale basin rings, Montes Apenninus
- Some Large Late-Imbrian-age craters

- Large craters of Late Imbrian and younger age
- Orientale basin rings, Montes Apenninus, Crisium basin ejecta
- Some tectonic features.

Steep slopes on the Moon:

Impact craters:

- Copernican craters: many and steeper than 40° 45°
- Eratosthenian and Late Imbrian: only walls and central peaks, <45°
- Late Imbrian + Orientale secondaries: < 40°
- Older craters: NO steep slopes.

Impact basins:

- Orientale basin (the youngest impact basin on the Moon): many and steeper than 35° – 40°
- Montes Apenninus (a part of Imbrium basin outer ring)
- Older impact basins: NO steep slopes.

Other:

Sinuous rills, tectonic features: < 40°

Steep slopes on the Moon:

Impact craters:

- Copernican craters: many and steeper than 40° 45°
- Eratosthenian and Late Imbrian: only walls and central peaks, <45°
- Late Imbrian + Orientale secondaries: < 40°
- Older craters: NO steep slopes.

Impact basins:

- Orientale basin (the youngest impact basin on the Moon): **many** and steeper than 35° 40°
- Montes Apenninus (a part of Imbrium basin outer ring)
- Older impact basins: NO steep slopes.

> Interpretation:

- ➤ Instant removal of pre-existing slopes steeper than 32° 35° by each basin-forming impact (global seismic shaking)
- Gradual degradation of steep slopes after the latest basin

Latitudinal trend of steep slope occurrence

Proportion of steep slopes averaged over narrow latitudinal zones

- "Geological noise"
- High latitudes are noisier (← smaller area of each zone)

Latitudinal trend of steep slope occurrence

- The amplitude of the latitudinal trend is comparable to the amplitude of predicted impact cratering rate variations
- But spatial distribution is different from predicted for impact rate (next slide)
 - Maximum is shifted form the apex to the farside
 - Deep minimum associated with SPA

Topography Smoothed down to spherical harmonics $l \leq 3$ Impact rate [Le Feuvre & Wieczorek, 2011] Proportion of slopes 25 m baseline steeper than 35° Global simple cylindrical projection centered at the sub-Earth point

Topography Smoothed down to spherical harmonics $l \leq 3$ Roughness (115 m baseline) Proportion of slopes 25 m baseline steeper than 35° Global simple cylindrical projection centered at the sub-Earth point

Conclusions

Steep slopes:

- are rare
- are produced by impacts and tectonics
- are removed by basin-forming impacts (seismic shaking)
- are gradually degrading after the last (Orientale) impact
 - global stratigraphic marker at Early/Late Imbrian boundary
 - > slopes give a rough estimate of stratigraphic age of craters
 - > interesting exceptions (Montes Apenninus, Tsiolkovskiy, Taruntius)
- correlate globally with impact rate distribution, but poorly
- correlate with topography and topographic roughness
 - which is puzzling

Solving these puzzles is important for future exploration of the Moon: they are related to the surface layer, where at some points in the future we will land, rove, and work